Diffusion and Homogenization Limits with Separate Scales
نویسندگان
چکیده
We consider the simultaneous diffusion and homogenization limit of the linear Boltzmann equation in a periodic medium in the regime where the mean free path is much smaller than the lattice constant. The resulting equation is a diffusion equation, with an averaged diffusion matrix that is formally obtained by first performing the diffusion limit and then the homogenization one. The rigorous proof relies on the use of two-scale limits, in combination with an asymptotic expansion of the equilibrium profile in powers of the ratio between the mean free path and the lattice constant.
منابع مشابه
Lecture 2 Homogenization in Porous Media
The goal of this lecture is to show that homogenization is a very efficient tool in the modeling of complex phenomena in heterogeneous media. In the first lecture we considered a model problem of diffusion for which the homogenized operator was of the same type (still a diffusion equation). In this context, homogenization is really a matter of defining and computing effective diffusion tensors....
متن کاملComputational Framework for Multiphysics Problems with Multiple Spatial and Temporal Scales
A systematic approach for analyzing multiple physical processes interacting at multiple spatial and temporal scales is developed. The proposed computational framework is applied to the coupled thermo-viscoelastic composites with microscopically periodic mechanical and thermal properties. A rapidly varying spatial and temporal scales are introduced to capture the effects of spatial and temporal ...
متن کاملHomogenization at different linear scales, bounded martingales and the Two-Scale Shuffle limit
In this paper, we consider two-scale limits obtained with increasing homogenization periods, each period being an entire multiple of the previous one. We establish that, up to a measure preserving rearrangement, these two-scale limits form a martingale which is bounded: the rearranged two-scale limits themselves converge both strongly in L2 and almost everywhere when the period tends to +∞. Thi...
متن کاملDiffusion in a Locally Stationary Random Environment
This paper deals with homogenization of diffusion processes in a locally stationary random environment. Roughly speaking, such an environment possesses two evolution scales: both a fast microscopic one and a smoothly varying macroscopic one. The homogenization procedure aims at giving a macroscopic approximation that takes into account the microscopic heterogeneities.
متن کاملWavelet Based Spatial Scaling of Coupled Reaction Diffusion Fields
Multiscale schemes for transferring information from fine to coarse scales are typically based on homogenization techniques. Such schemes smooth the fine scale features of the underlying fields, often resulting in the inability to accurately retain the fine scale correlations. In addition, higher-order statistical moments (beyond mean) of the relevant field variables are not necessarily preserv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Multiscale Modeling & Simulation
دوره 10 شماره
صفحات -
تاریخ انتشار 2012